101k views
4 votes
Let theta be an angle in quadrant II such that cos theta = -2/3

Find the exact values of csc theta and tan theta.

2 Answers

5 votes

Answer:


tan\theta{3}=-(\sqrt5)/(2)


cosec\theta=(3)/(\sqrt5)

Explanation:

We are given that
\theta be an angle in quadrant II and
cos\theta=-(2)/(3)

We have to find the exact values of
cosec\theta and
tan\theta.


sec\theta=(1)/(cos\theta)

Then substitute the value of cos theta and we get


sec\theta=(1)/(-(2)/(3))


sec\theta=-(3)/(2)

Now,
1+tan^2\theta=sec^2\theta


tan^2\theta=sec^2\theta-1

Substitute the value of sec theta then we get


tan^2\theta= (-(3)/(2))^2-1


tan^2\theta=(9)/(4)-1=(9-4)/(4)=(5)/(4)


tan\theta=\sqrt{(5)/(4)}=-(\sqrt5)/(2)

Because
tan\theta in quadrant II is negative.


sin^2\theta=1-cos^2\theta


sin^2\theta=1-(\farc{-2}{3})^2


sin^2\theta=1-(4)/(9)


sin^2\theta=(9-4)/(9)=(5)/(9)


sin\theta=\sqrt{(5)/(9)}


sin\theta=(\sqrt5)/(3)

Because in quadrant II
sin\theta is positive.


cosec\theta=(1)/(sin\theta)=(1)/((\sqrt5)/(3))


cosec\theta=(3)/(\sqrt5)


cosec\theta is positive in II quadrant.

User Mwatzer
by
6.5k points
6 votes

Answer:

So we have
\csc(\theta)=(3 √(5))/(5) \text{ and } \tan(\theta)=(-√(5))/(2).

Explanation:

Ok so we are in quadrant 2, that means sine is positive while cosine is negative.

We are given
\cos(\theta)=(-2)/(3)(\frac{\text{adjacent}}{\text{hypotenuse}}).

So to find the opposite we will just use the Pythagorean Theorem.


a^2+b^2=c^2


(2)^2+b^2=(3)^2


4+b^2=9


b^2=5


b=√(5) This is the opposite side.

Now to find
\csc(\theta) and
\tan(\theta).


\csc(\theta)=\frac{\text{hypotenuse}}{\text{opposite}}=(3)/(√(5)).

Some teachers do not like the radical on bottom so we will rationalize the denominator by multiplying the numerator and denominator by sqrt(5).

So
\csc(\theta)=(3)/(√(5)) \cdot (√(5))/(√(5))=(3 √(5))/(5).

And now
\tan(\theta)=\frac{\text{opposite}}{\text{adjacent}}=(√(5))/(-2)=(-√(5))/(2).

So we have
\csc(\theta)=(3 √(5))/(5) \text{ and } \tan(\theta)=(-√(5))/(2).

User Corstian Boerman
by
6.0k points