230k views
23 votes
What is the value of X6?

Show the solution.

What is the value of X6? Show the solution.-example-1

1 Answer

12 votes

Answer : The value of
x_6 is
√(7).

Explanation :

As we are given 6 right angled triangle in the given figure.

First we have to calculate the value of
x_1.

Using Pythagoras theorem in triangle 1 :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(x_1)^2=(1)^2+(1)^2


x_1=√((1)^2+(1)^2)


x_1=√(2)

Now we have to calculate the value of
x_2.

Using Pythagoras theorem in triangle 2 :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(x_2)^2=(1)^2+(X_1)^2


(x_2)^2=(1)^2+(√(2))^2


x_2=\sqrt{(1)^2+(√(2))^2}


x_2=√(3)

Now we have to calculate the value of
x_3.

Using Pythagoras theorem in triangle 3 :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(x_3)^2=(1)^2+(X_2)^2


(x_3)^2=(1)^2+(√(3))^2


x_3=\sqrt{(1)^2+(√(3))^2}


x_3=√(4)

Now we have to calculate the value of
x_4.

Using Pythagoras theorem in triangle 4 :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(x_4)^2=(1)^2+(X_3)^2


(x_4)^2=(1)^2+(√(4))^2


x_4=\sqrt{(1)^2+(√(4))^2}


x_4=√(5)

Now we have to calculate the value of
x_5.

Using Pythagoras theorem in triangle 5 :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(x_5)^2=(1)^2+(X_4)^2


(x_5)^2=(1)^2+(√(5))^2


x_5=\sqrt{(1)^2+(√(5))^2}


x_5=√(6)

Now we have to calculate the value of
x_6.

Using Pythagoras theorem in triangle 6 :


(Hypotenuse)^2=(Perpendicular)^2+(Base)^2


(x_6)^2=(1)^2+(X_5)^2


(x_6)^2=(1)^2+(√(6))^2


x_6=\sqrt{(1)^2+(√(6))^2}


x_6=√(7)

Therefore, the value of
x_6 is
√(7).

User Shinva
by
3.9k points