Answer:
Option 1:(x-4)^2+y^2=100
Explanation:
Given center = (h,k) = (4,0)
The point (-2,8) lies on circle which means the distance between the point and center will be equal to the radius.
So,
The distance formula will be used:
![d = \sqrt{(x_2-x_1)^(2)+(y_2-y_1)^(2)} \\=\sqrt{(4+2)^(2)+(0-8)^(2)}\\=\sqrt{(6)^(2)+(-8)^(2)}\\=√(36+64)\\ =√(100)\\ =10\ units](https://img.qammunity.org/2020/formulas/mathematics/high-school/q1eipxnd3vv9ni5ob15nux1h555xkkwena.png)
Hence radius is 10.
The standard form of equation of circle is:
(x-h)^2+(y-k)^2 = r^2
Putting the values
(x-4)^2+(y-0)^2=10^2
(x-4)^2+y^2=100
Hence option 1 is correct ..