Answer:
A(2,2)
Explanation:
Let the vertex A has coordinates
![(x_A,y_A)](https://img.qammunity.org/2020/formulas/mathematics/high-school/uvyonvj1g9yizr800wz74zrnlob5nh8k7k.png)
Vectors AB and AB' are perpendicular, then
![\overrightarrow {AB}=(2-x_A,6-y_A)\\ \\\overrightarrow {AB'}=(-2-x_A,2-y_A)\\ \\\overrightarrow {AB}\perp\overrightarrow {AB'}\Rightarrow \overrightarrow {AB}\cdot \overrightarrow {AB'}=0\Rightarrow (2-x_A)(-2-x_A)+(6-y_A)(2-y_A)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/bc0y8oyciuh0b7lcytew00u42e6gkjr9ku.png)
Vectors AC and AC' are perpendicular, then
![\overrightarrow {AC}=(4-x_A,3-y_A)\\ \\\overrightarrow {AC'}=(1-x_A,4-y_A)\\ \\\overrightarrow {AC}\perp\overrightarrow {AC'}\Rightarrow \overrightarrow {AC}\cdot \overrightarrow {AC'}=0\Rightarrow (4-x_A)(1-x_A)+(3-y_A)(4-y_A)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/9agpkb2fr8a1hqct81z1fsuzbiz90pjrk7.png)
Now, solve the system of two equations:
![\left\{\begin{array}{l}(2-x_A)(-2-x_A)+(6-y_A)(2-y_A)=0\\ \\(4-x_A)(1-x_A)+(3-y_A)(4-y_A)=0\end{array}\right.\\ \\\left\{\begin{array}{l}-4-2x_A+2x_A+x_A^2+12-6y_A-2y_A+y^2_A=0\\ \\4-4x_A-x_A+x_A^2+12-3y_A-4y_A+y_A^2=0\end{array}\right.\\ \\\left\{\begin{array}{l}x_A^2+y_A^2-8y_A+8=0\\ \\x_A^2+y_A^2-5x_A-7y_A+16=0\end{array}\right.](https://img.qammunity.org/2020/formulas/mathematics/high-school/h54rsvn5uneg8mm4mkorv4uhiybiwvwbxr.png)
Subtract these two equations:
![5x_A-y_A-8=0\Rightarrow y_A=5x_A-8](https://img.qammunity.org/2020/formulas/mathematics/high-school/wnde8mrfopdtefeieemjm87hj174n35fr7.png)
Substitute it into the first equation:
![x_A^2+(5x_A-8)^2-8(5x_A-8)+8=0\\ \\x_A^2+25x_A^2-80x_A+64-40x_A+64+8=0\\ \\26x_A^2-120x_A+136=0\\ \\13x_A^2-60x_A+68=0\\ \\D=(-60)^2-4\cdot 13\cdot 68=3600-3536=64\\ \\x_{A_(1,2)}=(60\pm8)/(2\cdot 13)=(34)/(13),2](https://img.qammunity.org/2020/formulas/mathematics/high-school/mvobw2mhh42s5cu9vpri6ygaogv6wsuuus.png)
Then
![y_{A_(1,2)}=5\cdot (34)/(13)-8 \text{ or } 5\cdot 2-8\\ \\=(66)/(13)\text{ or } 2](https://img.qammunity.org/2020/formulas/mathematics/high-school/gr7ijh3cph9eo6tqjbouk7l5dxpevcjd0n.png)
Rotation by 90° counterclockwise about A(2,2) gives image points B' and C' (see attached diagram)