73.7k views
4 votes
Find the area of quadrilateral ABCD. [Hint: the diagonal divides the quadrilateral into two triangles.]

A. 26.47 units²
B. 28.53 units²
C. 33.08 units²
D. 27.28 units²

Find the area of quadrilateral ABCD. [Hint: the diagonal divides the quadrilateral-example-1

2 Answers

1 vote

Answer:

B.) 28.53 units²

Explanation:

I got it correct on founders edtell

User Ercument
by
8.4k points
3 votes

Answer:

Option B
28.53\ units^(2)

Explanation:

The area of quadrilateral ABCD is equal to the area of triangle ABD plus the area of triangle ADC

we know that

Heron's Formula is a method for calculating the area of a triangle when you know the lengths of all three sides.

Let

a,b,c be the lengths of the sides of a triangle.

The area is given by:


A=√(p(p-a)(p-b)(p-c))

where

p is half the perimeter


p=(a+b+c)/(2)

step 1

Find the area of triangle ABD

we have


a=AB=2.89\ units


b=BD=8.59\ units


c=DA=8.6\ units

Find the half perimeter p


p=(2.89+8.59+8.6)/(2)=10.04\ units

Find the area


A=√(10.04(10.04-2.89)(10.04-8.59)(10.04-8.6))


A=√(10.04(7.15)(1.45)(1.44))


A=√(149.89)


A=12.24\ units^(2)

step 2

Find the area of triangle ADC

we have


a=AC=4.3\ units


b=AD=8.6\ units


c=DC=7.58\ units

Find the half perimeter p


p=(4.3+8.6+7.58)/(2)=10.24\ units

Find the area


A=√(10.24(10.24-4.3)(10.24-8.6)(10.24-7.58))


A=√(10.24(5.94)(1.64)(2.66))


A=√(265.35)


A=16.29\ units^(2)

step 3

Find the total area


A=12.24+16.29=28.53\ units^(2)

User Haya Raed
by
7.7k points