Answer:
![E' = (E)/(8)](https://img.qammunity.org/2020/formulas/physics/college/k3qtw504phyq1zq90ieh1zfcwvvew84wh6.png)
Step-by-step explanation:
As we know that that electric field inside the solid non conducting sphere is given as
![\int E.dA = (q_(en))/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/m79f93saqnjwpc15lxe7vv3vx6hwxbpw81.png)
![\int E.dA = ((Q)/(R^3)r_1^3)/(\epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/bwh5jh1jvztinc3m18t5dtf4ntxvfiy9uk.png)
![E(4\pi r_1^2) = (Qr_1^3)/(R^3 \epsilon_0)](https://img.qammunity.org/2020/formulas/physics/college/vrab03ovz17ln1s8pus3u61fity2i9j61m.png)
so electric field is given as
![E = (Qr_1)/(4\pi \epsilon_0 R^3)](https://img.qammunity.org/2020/formulas/physics/college/7pix2fkos09vo3v41fa8ohd5wpisz8fi1x.png)
now if another sphere has same charge but twice of radius then the electric field at same position is given as
![E' = (Qr_1)/(4\pi \epsilon_0 (2R)^3)](https://img.qammunity.org/2020/formulas/physics/college/fnjs52wrreifhwgaez72kczoq1t1dc9x9n.png)
so here we have
![E' = (E)/(8)](https://img.qammunity.org/2020/formulas/physics/college/k3qtw504phyq1zq90ieh1zfcwvvew84wh6.png)