31.9k views
3 votes
The time required for an automotive center to complete an oil change service on an automobile approximately follows a normal​ distribution, with a mean of 19 minutes and a standard deviation of 3 minutes. ​(a) The automotive center guarantees customers that the service will take no longer than 20 minutes. If it does take​ longer, the customer will receive the service for​ half-price. What percent of customers receive the service for​ half-price? ​(b) If the automotive center does not want to give the discount to more than 2​% of its​ customers, how long should it make the guaranteed time​ limit?

User Rozon
by
8.3k points

1 Answer

4 votes

Answer:

We have a normal distribution with a mean of 19 minutes and a standard deviation of 3 minutes. To solve the problem we're going to need the help of a calculator:

P(z>20) = 0.3694

Therefore, the percentage of costumbers that will receive the service for half-price is: 36.94%.

Also, we've found that p(z>25.16) = 0.02. Therefore, if they only want to offer half-price discount to only 2% of its costumber, the time limit should be 25.16 minutes.

The time required for an automotive center to complete an oil change service on an-example-1
The time required for an automotive center to complete an oil change service on an-example-2
User Inox
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories