Answer:
The function has a maximum in
![x=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmja0xwsmt4jtrinnsn2lhtcie4am0nxwn.png)
The maximum is:
![f(3) = 39](https://img.qammunity.org/2020/formulas/physics/college/wegodqq11j845q7efcol1f9rls768qcl67.png)
Step-by-step explanation:
Find the first derivative of the function for the inflection point, then equal to zero and solve for x
![f(x)' = -4*2x + 24=0](https://img.qammunity.org/2020/formulas/physics/college/u3g8h51knbv2w8s3z3hv9wof93pzug0c3g.png)
![-4*2x + 24=0](https://img.qammunity.org/2020/formulas/physics/college/fzn16bm87b2lgzbyt5g8t3stcoortz036i.png)
![8x=24](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3dqgvuebim0lbihlv9c6089u4qbwuqmr8m.png)
![x=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmja0xwsmt4jtrinnsn2lhtcie4am0nxwn.png)
Now find the second derivative of the function and evaluate at x = 3.
If
the function has a maximum
If
the function has a minimum
![f(x)''= 8](https://img.qammunity.org/2020/formulas/physics/college/g5uosg74290y3natiznzu6f2u6255xqd3k.png)
Note that:
![f(3)''= -8<0](https://img.qammunity.org/2020/formulas/physics/college/1xnmc2foaq9pup66ehowx4bdwiuhi4b9tg.png)
the function has a maximum in
![x=3](https://img.qammunity.org/2020/formulas/mathematics/middle-school/jmja0xwsmt4jtrinnsn2lhtcie4am0nxwn.png)
The maximum is:
![f(3)=-4(3)^2+24(3) + 3\\\\f(3) = 39](https://img.qammunity.org/2020/formulas/physics/college/ik5i8cm3unea64ll5zbtn49ot2qwzwpnwq.png)