Answer:
(a + b)(a + b - 2c)
Explanation:
Note that
(a + b)² = a² + b² + 2ab
Given
a² + b² + 2(ab - ac - bc) ← distribute parenthesis
= a² + b² + 2ab - 2ac - 2bc
= (a + b)² - 2ac - 2bc ← factor out - 2c from each term
= (a + b)² - 2c (a + b) ← factor out (a + b) from each term
= (a + b) [ a + b - 2c ]
= (a + b)(a + b - 2c) ← in factored form