Answer:
Option C (d = 14n + 50).
Explanation:
The observations for Year 1, 2, 3, and 4 are 64, 78, 92, and 106 respectively. It can be observed that the difference between second term and the first term is 78 - 64 = 14. This is also true for the third term and the second term. In fact, the difference between the terms is fixed. This means that the sequence is an arithmetic sequence, in which the difference between the terms is fixes for all the terms. The nth term in this case is defined as:
S = a + (n-1)*d; where S is the output at a given n, a is the first term, n is the position, and d is the common difference. In this question, S = ducks (d), a = 64, and d = 14. Therefore, plugging in the values in the above formula gives:
d = 64 + (n-1)*14.
d = 64 + 14n - 14.
d = 14n + 50.
Therefore, the model which best describes the amount of ducks that will be in the pond during the nth year is d = 14n + 50, i.e. Option C!!!