Answer:
x = 70°
y = 55°
z = 55°
Explanation:
Look at the picture.
We know: the sum of the angles measure in the triangle is 180°. Therefore we have the equation:
![35^o+35^o+\alpha=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/qylrnb2zcjpy5x5lebd83gjy9phw53lhn4.png)
Solve it:
![70^o+\alpha=180^o\qquad\text{subtract}\ 70^o\ \text{from both sides}\\\\\alpha=110^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yezzfygp7efcsvurnno9ijuypxk3e1y8dc.png)
Angle α and β = x are the supplementary angles. Supplementary angles add up to 180°. Therefore:
![\alpha+\beta=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/xavrtyz44g3bpcd85iegg7hzifwj8uoeta.png)
![110^o+\beta=180^o\qquad\text{subtract}\ 110^o\ \text{from both sides}\\\\\beta=70^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1caok78cyw6rdr5th6drw3alkanb41cle1.png)
![\beta+\gamma+\gamma=180^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2n1yr0vi6hjvzbyf5alc919edtucrfblkx.png)
![70^o+2\gamma=180^o\qquad\text{subtract}\ 70^o\ \text{from both sides}\\\\2\gamma=110^o\qquad\text{divide both sides by 2}\\\\\gamma=55^o](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2zxhn2cw1uftxkltv8n07x8ccbuj4djx31.png)