Answer: 56.25 feet.
Explanation:
For a Quadratic function in the form
, if
then the parabola opens downward.
Rewriting the given function as:
![h(t) = - 16t^2+60t](https://img.qammunity.org/2020/formulas/mathematics/college/2yx240dv7z4aiszkmo0yuolfkglj7nsoep.png)
You can identify that
![a=-16](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cf7lzoherdclx7ucwebt8bltkyu80wrcr2.png)
Since
then the parabola opens downward.
Therefore, we need to find the vertex.
Find the x-coordinate of the vertex with this formula:
![x=(-b)/(2a)](https://img.qammunity.org/2020/formulas/mathematics/college/h04sw6r4c6bv9gj7zipt5c1gmb3qbez2n6.png)
Substitute values:
![x=(-60)/(2(-16))=1.875](https://img.qammunity.org/2020/formulas/mathematics/college/mp1rt1f6azav6zm3mj5nx6yesve382dtd0.png)
Substitute the value of "t" into the function to find the height in feet that the ball will reach. Then:
![h(1.875)=- 16(1.875)^2+60(1.875)=56.25ft](https://img.qammunity.org/2020/formulas/mathematics/college/c4z3j5zi5aq41c61814k4n964ndl880wug.png)