Answer: 0.3446
Explanation:
Given : Mean :
![\mu = 90](https://img.qammunity.org/2020/formulas/mathematics/college/benhfbr73lpyc63zysxq084kw048prt9ct.png)
Standard deviation :
![\sigma = 10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/95pj5ysmacanfx6zou50j2ldlqti04fj51.png)
Also, the reading speed of second grade students in a large city is approximately normal.
Then , the formula to calculate the z-score is given by :_
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
For x = 94
![z=(94-90)/(10)=0.4](https://img.qammunity.org/2020/formulas/mathematics/college/zprzppmktkq4pga8thnn19ipceyjo6yt3v.png)
The p-value =
![P(z>0.4)=1-P(z<0.4)=1-0.6554217](https://img.qammunity.org/2020/formulas/mathematics/college/ghq2mr2h9cjpc5lic8j5e7oyt0ocgfr2rq.png)
![\\\\=0.3445783\approx0.3446](https://img.qammunity.org/2020/formulas/mathematics/college/da2ienb619ng5iq110h460ooigizlbgmiw.png)
Hence, the probability a randomly selected student in the city will read more than 94 words per minute =0.3446