Answer:
1) 0.3456
2) 0.6544.
Explanation:
Let X represents the event of recognizing the brand,
Given,
The probability of recognizing the brand, p = 40% = 0.40,
Thus, the probability of not recognizing the brand, q = 1 - 0.40 = 0.60,
Since, the binomial distribution formula,
![P(x) = ^nC_r (p)^r(q)^(n-r)](https://img.qammunity.org/2020/formulas/mathematics/college/g1r7n687mio9tavso4zlh2vgxacalxej4w.png)
Where,
![^nC_r=(n!)/(r!(n-r)!)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/keq9fu1kexw4i9m71wsvnyit4wbq0pynjj.png)
1) Thus, the probability that exactly 2 of the 5 consumers recognize the brand name is,
![P(X=2)=^5C_2 (0.40)^2 (0.60)^(5-2)](https://img.qammunity.org/2020/formulas/mathematics/college/m8fpci0hvlhu9uupuhhiirz826ue7fwlhi.png)
![=10 (0.40)^2 (0.60)^3](https://img.qammunity.org/2020/formulas/mathematics/college/59s3t5v0ydg8xta77x4gg7ycmo2t3jonq9.png)
![=0.3456](https://img.qammunity.org/2020/formulas/mathematics/college/qmpw54v5axraycvzir0vnbnt7bqedrggvl.png)
2) Also, the probability that the number who recognize the brand name is not 2 = 1 - P(X=2) = 1 - 0.3456 = 0.6544.