ANSWER
a) Use the homogeneous property of the binomial expansion to find the missing exponent
b) Use the binomial theorem to find the coefficient
Step-by-step explanation
The given binomial expansion is:
![(x+y)^(12)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/l92a1e5k7vyi8d4pmq02cis1sg15p5ar74.png)
When we compare this to
![(a + b) ^(n)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kdlahkgsv7vyt48oivid4j4il0ub3g9qg1.png)
We have
![n = 12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kbbzk0lsmbioh3gdd115ykowbzj9t9g0xe.png)
Therefore the of each term in the expansion must be 12.
![\implies \: 7 + b = 12](https://img.qammunity.org/2020/formulas/mathematics/middle-school/96uqv5yfyl28hwtj7rij4ijglm7j95zr0f.png)
![b = 12 - 7](https://img.qammunity.org/2020/formulas/mathematics/middle-school/bbhxnj4x828z6lhyu79mygimbldigm5y6r.png)
![b = 5](https://img.qammunity.org/2020/formulas/mathematics/high-school/gt0j2okna5phuykbxeuckhc7v3f55ky662.png)
Since the coefficient of x and y are unity, we use the formula
![^(n) C_r = (n!)/((n - r)!r!)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/outmg2gwiavo5tz47ioc60y372q64ddwrk.png)
to find the coefficient.
Where n=12 and r=5(the exponent of the y-term).
Therefore the coefficient is
![^(12) C_5= (12!)/((12- 5)!5!)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ttfb0q9z9b9c3kbys82mu854oo78ag8q61.png)
![^(12) C_5= (12!)/(7!5!)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/93hy27zyz5llumr1gebimiy5la2ijiv4xo.png)
![^(12) C_5= (12 * 11 * 10 * 9 * 8 * 7!)/(7! * 5 * 4 * 3 * 2 * 1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/2ep5darica4peajsa7zaamli7fhk1nbrib.png)
When we simplify further we get:
![^(12) C_5= 11 * 9 * 8 = 792](https://img.qammunity.org/2020/formulas/mathematics/middle-school/my5bbi9sjsg9a8h440wiviikpxm12x7kps.png)