Answer:
The final temperature of the system is 16.4°C.
Step-by-step explanation:
Given that,
Mass of ice cube = 0.0811 kg=81.1 g
Mass of water = 0.397 kg = 397 g
Initial temperature of ice cube = 0°C=273 K
Initial temperature of water = 14.8°C = 14.8+273=287.8 K
We need to calculate the final temperature
We know that,
Specific capacity of solid = 2.09 J/g°C
Using formula of energy
![E_(s)=E_(l)](https://img.qammunity.org/2020/formulas/physics/college/ruq6bb1uyrpyjtnupqmgsk62u74bqatmlx.png)
![mc_{p_(s)}(T_(f)-T_(i))=mc_{p_(s)}(T_(f)-T_(i))](https://img.qammunity.org/2020/formulas/physics/college/7v8bnmg16nk3vrxnimh2epfo2dd6ho7652.png)
Put the value into the formula
![81.1*2.09(T_(f)-0)=397*4.18*(T_(f)-14.8)](https://img.qammunity.org/2020/formulas/physics/college/b0e2bdo5r66ws7px0l04mnc2lzme2vhji5.png)
![169.5(T_(f)-0)=1659.5(T_(f)-14.8)](https://img.qammunity.org/2020/formulas/physics/college/iaoazvyeeoyajvz070hxs82w3ye8ex5f4y.png)
![169.5T_(f)=1659.5T_(f)-24560.6](https://img.qammunity.org/2020/formulas/physics/college/vmgm48whtsfoyngt0qtxd45ja78izb83mg.png)
![1490T_(f)=24560.6](https://img.qammunity.org/2020/formulas/physics/college/3032eqhc283wesglif0td7hlbagir6s9jx.png)
![T_(f)=(24560.6)/(1490)](https://img.qammunity.org/2020/formulas/physics/college/teyowe33or4nxfk8eeuxl30yfbl7ks4wbx.png)
![T_(f)=16.4^(\circ)\ C](https://img.qammunity.org/2020/formulas/physics/college/1mraeknljcoddxh92ru3sxbkeke8oqhcir.png)
Hence, The final temperature of the system is 16.4°C.