Answer:
Part A)
![\alpha = 745 rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/v6kumnprwy1e1sotdd8mhj0kyv4skozupd.png)
Part B)
![\theta = 4563.1 rad](https://img.qammunity.org/2020/formulas/physics/college/1tuk98wykqjphxvxi53n20u524qfeyvpse.png)
Step-by-step explanation:
Drill starts from rest so its initial angular speed will be
![\omega_i = 0](https://img.qammunity.org/2020/formulas/physics/high-school/r2jyhagoricudnir8hcxca5am6vdt6xo6t.png)
now after 3.50 s the final angular speed is given as
![f = 2.49 * 10^4 rev/min](https://img.qammunity.org/2020/formulas/physics/college/ubwo3w6s9e9qwommyzarb5qekj1x0tb0ds.png)
![f = {2.49 * 10^4}{60} = 415 rev/s](https://img.qammunity.org/2020/formulas/physics/college/eo6y3odl6rrgr3up69vqvwec0xghwyqf16.png)
so final angular speed is given as
![\omega = 2\pi f](https://img.qammunity.org/2020/formulas/physics/middle-school/pwzsovla2h22uvtixjbu2t72piygxnka5a.png)
![\omega_f = 2607.5 rad/s](https://img.qammunity.org/2020/formulas/physics/college/leon5dtg3qn2q69it9rb2rsr3yorhoog5f.png)
now we have angular acceleration given as
![\alpha = (\omega_f - \omega_i)/(\Delta t)](https://img.qammunity.org/2020/formulas/physics/middle-school/xvot4884fr0lfp4yee0svp31vj6947pmjj.png)
![\alpha = (2607.5 - 0)/(3.50)](https://img.qammunity.org/2020/formulas/physics/college/zynluor28ti4ykkiqevvq9suvu09jaeyv4.png)
![\alpha = 745 rad/s^2](https://img.qammunity.org/2020/formulas/physics/college/v6kumnprwy1e1sotdd8mhj0kyv4skozupd.png)
Part b)
The angle through which it is rotated is given by the formula
![\theta = ((\omega_f + \omega_i))/(2)\delta t](https://img.qammunity.org/2020/formulas/physics/college/dezn9qc085w03l4f0ofdwg3215djf18ey9.png)
now we have
![\theta = ((2607.5 + 0))/(2)(3.50)](https://img.qammunity.org/2020/formulas/physics/college/fce8wvz0zo4r1cf3pxse9ifecsct2z8sd3.png)
![\theta = 4563.1 rad](https://img.qammunity.org/2020/formulas/physics/college/1tuk98wykqjphxvxi53n20u524qfeyvpse.png)