167k views
5 votes
Which shows 3x^2-18x=21 as a perfect square equation? what are the solution(s)?

a. (x-3)^2=0; -3
b. (x-3)^2=16; -1 and 7
c. x^2-6x+9; -3
d. 3x^2-18x-21=0, -1 and 7

1 Answer

4 votes

Answer:

b

Explanation:

Given

3x² - 18x = 21 ( divide all terms by 3 )

x² - 6x = 7

To complete the square

add ( half the coefficient of the x- term )² to both sides

x² + 2(- 3)x + 9 = 7 + 9

(x - 3)² = 16 ( take the square root of both sides )

x - 3 = ±
√(16) = ± 4 ( add 3 to both sides )

x = 3 ± 4, hence

x = 3 - 4 = - 1 and x = 3 + 4 = 7

User Roy Tinker
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories