Answer:
The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.
Step-by-step explanation:
Given that,
Mass of aircraft = 10000 kg
Speed = 620 km/h = 172.22 m/s
Altitude = 10 km = 1000 m
We calculate the change in potential energy
![\Delta P.E=mg(h_(2)-h_(1))](https://img.qammunity.org/2020/formulas/physics/college/y984p5ovbk08mm3a1mby0j882vy5wfucve.png)
![\Delta P.E=10000*9.8*(10000-0)](https://img.qammunity.org/2020/formulas/physics/college/ao2i3o5auk2g6djgbiyysw9d7qtph2ex2z.png)
![\Delta P.E=10000*9.8*10000](https://img.qammunity.org/2020/formulas/physics/college/52f089sgo5etzpqtong2wx0b05gwoujwas.png)
![\Delta P.E=980000000\ J](https://img.qammunity.org/2020/formulas/physics/college/77wu1gbzo9e1k425vb50nj4akd8v5cyaso.png)
![\Delta P.E=980\ MJ](https://img.qammunity.org/2020/formulas/physics/college/hn1obdbi6lxisem4r8hfpp3braa0mfit2b.png)
For g = 10 m/s²,
The change in potential energy will be 1000 MJ.
We calculate the change in kinetic energy
![\Delta K.E=(1)/(2)m(v_(2)^2-v_(1)^2)](https://img.qammunity.org/2020/formulas/physics/college/2ppf2vxd98oqajktmo5pqqg4qkvgncen3q.png)
![\Delta K.E=(1)/(2)*10000*(172.22^2-0^2)](https://img.qammunity.org/2020/formulas/physics/college/x84pswzemwdm37lewkpxqwf9e3gwbmrc8p.png)
![\Delta K.E=(1)/(2)*10000*(172.22^2)](https://img.qammunity.org/2020/formulas/physics/college/3p3b1bj1bzokp09foidxf9vc4rbbfq6r8u.png)
![\Delta K.E=148298642\ J](https://img.qammunity.org/2020/formulas/physics/college/hh96gkl6levesdqag53j7pp3sz7l44yd2t.png)
![\Delta K.E=148.3\ MJ](https://img.qammunity.org/2020/formulas/physics/college/u8hhicuasjxadfgxx761fnx1q5tceq4g0p.png)
For g = 10 m/s²,
The change in kinetic energy will be 150 MJ.
Hence, The change in potential energy and kinetic energy are 980 MJ and 148.3 MJ.