For any equation,
![a_ny^(n)+\dots+a_1y'+a_0y=0](https://img.qammunity.org/2020/formulas/mathematics/college/q6t3zxxx65knyzjjnp6kpa0gft1km4xsa8.png)
assume solution of a form,
![e^(yt)](https://img.qammunity.org/2020/formulas/mathematics/college/p866xttxzlm8k58c5koq3h3hafpdtnt4ql.png)
Which leads to,
![(e^(yt))'''-(e^(yt))''+4(e^(yt))'-4e^(yt)=0](https://img.qammunity.org/2020/formulas/mathematics/college/ahilcocpntchh1uepgs9qx560jejn9db4d.png)
Simplify to,
![e^(yt)(y^3-y^2+4y-4)=0](https://img.qammunity.org/2020/formulas/mathematics/college/f3hw0q4khejcjg41bcujm80oysnzcwy8mi.png)
Then find solutions,
![\underline{y_1=1}, \underline{y_2=2i}, \underline{y_3=-2i}](https://img.qammunity.org/2020/formulas/mathematics/college/bitf9bplyo53y3z1beawauvijycmx7fxe2.png)
For non repeated real root y, we have a form of,
![y_1=c_1e^t](https://img.qammunity.org/2020/formulas/mathematics/college/6oulyowlpuks6nsg6v18pfcs1myzmnuajf.png)
Following up,
For two non repeated complex roots
where,
![y_2=a+bi](https://img.qammunity.org/2020/formulas/mathematics/college/6qit61f0icar8n8f9u35htjw78wz0nesuz.png)
and,
the general solution has a form of,
![y=e^(at)(c_2\cos(bt)+c_3\sin(bt))](https://img.qammunity.org/2020/formulas/mathematics/college/96n16i2ttc2becabby6c6mps298207o77j.png)
Or in this case,
![y=e^0(c_2\cos(2t)+c_3\sin(2t))](https://img.qammunity.org/2020/formulas/mathematics/college/zrpaykca1u7zqu4b31vx080hlgbddhroct.png)
Now we just refine and get,
![\boxed{y=c_1e^t+c_2\cos(2t)+c_3\sin(2t)}](https://img.qammunity.org/2020/formulas/mathematics/college/7lza54x3chpx9sizpmr75kfmdhfwt89kt8.png)
Hope this helps.
r3t40