Looks like the integral is
![\displaystyle\iint_R2(x+1)y^2\,\mathrm dA](https://img.qammunity.org/2020/formulas/mathematics/college/6t6d6y0iodddqv3etajwis3aacg7hbt85a.png)
where
. (The inclusion of
will have no effect on the value of the integral.)
Let's split up
into
equally-sized rectangular subintervals, and use the bottom-left vertices of each rectangle to approximate the integral. The intervals will be partitioned as
![[0,1]=\left[0,\frac1m\right]\cup\left[\frac1m,\frac2m\right]\cup\cdots\cup\left[\frac{m-1}m,1\right]](https://img.qammunity.org/2020/formulas/mathematics/college/8ctom7yfxuiu4g1tkd35skpfhfakty4tn4.png)
and
![[0,3]=\left[0,\frac3n\right]\cup\left[\frac3n,\frac6n\right]\cup\cdots\cup\left[\frac{3(n-1)}n,3\right]](https://img.qammunity.org/2020/formulas/mathematics/college/lejdldkga97zhslws9l0gw64z22r7s3ymq.png)
where the bottom-left vertices of each rectangle are given by the sequence
![v_(i,j)=\left(\frac{i-1}n,\frac{3(j-1)}n\right)](https://img.qammunity.org/2020/formulas/mathematics/college/5i58y0s3mm8bp9g0f8lrvu1vpgnziv141e.png)
with
and
. Then the Riemann sum is
![\displaystyle\lim_(m\to\infty,n\to\infty)\sum_(i=1)^m\sum_(j=1)^nf(v_(i,j))\frac{1-0}m\frac{3-0}n](https://img.qammunity.org/2020/formulas/mathematics/college/a96gmjb7rnb4wnxxpn0x19mkrwof5xjoxo.png)
![\displaystyle=\lim_(m\to\infty,n\to\infty)\frac3{mn}\sum_(i=1)^m\sum_(j=1)^n(18)/(mn^2)(j-1)^2(i-1+m)](https://img.qammunity.org/2020/formulas/mathematics/college/k2g6ut1gffw54w0y5hz93a2c5zss1sguk9.png)
![\displaystyle=\lim_(m\to\infty,n\to\infty)(54)/(m^2n^3)\sum_(i=0)^(m-1)\sum_(j=0)^(n-1)j^2(i+m)](https://img.qammunity.org/2020/formulas/mathematics/college/ytr07nmirk7ed3lc838vh8kf7yjr0jghsu.png)
![\displaystyle=\frac92\lim_(m\to\infty,n\to\infty)((3m-1)(2n^3-3n^2+n))/(mn^3)](https://img.qammunity.org/2020/formulas/mathematics/college/teqat4nuh9et9x7dvgbcx84dbi04frxuj8.png)
![\displaystyle=\frac92\left(\lim_(m\to\infty)\frac{3m-1}m\right)\left(\lim_(n\to\infty)(2n^3-3n^2+n)/(n^3)\right)=\boxed{27}](https://img.qammunity.org/2020/formulas/mathematics/college/5mgvjjlxale5r8lfqtjt5vplvhnejrvwww.png)