Answer:
The weight at a distance 4R from the center of earth is 10.37 N.
Step-by-step explanation:
Given that,
Weight = 166 N
Distance = 4R
Let m be the mass of the object.
We know that,
Mass of earth
![M_(e)=5.98*10^(24)\ kg](https://img.qammunity.org/2020/formulas/physics/college/q1iepwl0v4z2kj6kf5okxe87guhl13amty.png)
Gravitational constant
![G = 6.67*10^(-11)\ N-m^2/kg^2](https://img.qammunity.org/2020/formulas/physics/college/swgobxqz4ik2o6gz6bty1s53qkds0ugjr8.png)
Radius of earth
![R = 6.38*10^(6)\ m](https://img.qammunity.org/2020/formulas/physics/college/simxn9b3hyuxe0spmd4orx47rbkab1yptx.png)
We need to calculate the weight at a distance 4 R from the center of earth
Using formula of gravitational force
![W = (GmM_(e))/(R^2)](https://img.qammunity.org/2020/formulas/physics/college/fi9h5xtdeokcy81p3jaxniw2hyteye61hd.png)
Put the value in to the formula
![166=(6.67*10^(-11)* m*5.98*10^(24))/((6.38*10^(6))^2)](https://img.qammunity.org/2020/formulas/physics/college/ammhyfk61f3y6kekwy3vgels7ll4zdfnv1.png)
![m=(166*(6.38*10^(6))^2)/(6.67*10^(-11)*5.98*10^(24))](https://img.qammunity.org/2020/formulas/physics/college/jdedw1kkqum7ed48no8xwrdbr9yatwd7bf.png)
![m=16.94 kg](https://img.qammunity.org/2020/formulas/physics/college/njcyunofo0c1j7dlv8up53izaj49c3xm80.png)
Now, Again using formula of gravitational
![W=(6.67*10^(-11)* 16.94*5.98*10^(24))/((4*6.38*10^(6))^2)](https://img.qammunity.org/2020/formulas/physics/college/8i9cty17b2aquk9x6gx027ojl4py40l4ca.png)
![W=10.37 N](https://img.qammunity.org/2020/formulas/physics/college/s85esweek2am2v3r32pfb9igkg3pbiqril.png)
Hence, The weight at a distance 4R from the center of earth is 10.37 N.