170k views
2 votes
Given the Homogeneous equation x^2ydy+xy^2dx=0, use y=ux, u=y/x and dy=udx+xdu to solve the differential equation. Solve for y.

User Termas
by
8.4k points

1 Answer

4 votes

Answer:


y=(C)/(x).

Explanation:

Given homogeneous equation


x^2ydy+xy^2dx=0


\frac{\mathrm{d}y}{\mathrm{d}x}=-(xy^2)/(x^2y)

Substitute y=ux ,
u=(y)/(x)


\frac{\mathrm{d}y}{\mathrm{d}x}=-(y)/(x)

Now,


u+x\frac{\mathrm{d}u}{\mathrm{d}x}=\frac{\mathrm{d}y}{\mathrm{d}x}


u+x\frac{\mathrm{d}u}{\mathrm{d}x}=-u


\frac{\mathrm{d}u}{\mathrm{d}x}=-2u


(du)/(u)=-(dx)/(x)

Integrating both side we get

lnu=-2lnx+lnC

Where lnC= integration constant


lnu+ln{x}^2=lnC


lnux^2=lnC

Cancel ln on both side


ux^2=C

Substitute
u=(y)/(x)

Then we get

xy=C


y=(C)/(x).

Answer:
y=(C)/(x).

User Thitemple
by
8.1k points