176k views
1 vote
(b) dy/dx = (x-y + 1)^2

1 Answer

4 votes

Answer:

The required answer is
x+C=(1)/(2)\ln|(2+x-y)/(y-x)|.

Explanation:

The given differential equation is


(dy)/(dx)=(x-y+1)^2

Substitute u=x-y+1 in the above equation.


(du)/(dx)=1-(dy)/(dx)


(dy)/(dx)=1-(du)/(dx)


1-(du)/(dx)=u^2


1-u^2=(du)/(dx)

Using variable separable method, we get


dx=(du)/(1-u^2)

Integrate both the sides.


\int dx=\int (du)/(1-u^2)


x+C=(1)/(2)\ln|(1+u)/(1-u)|
[\because \int (dx)/(a^2-x^2)=(1)/(2a)\\|(a+x)/(a-x)|+C]

Substitute u=x-y+1 in the above equation.


x+C=(1)/(2)\ln|(1+x-y+1)/(1-(x-y+1))|


x+C=(1)/(2)\ln|(2+x-y)/(y-x)|

Therefore the required answer is
x+C=(1)/(2)\ln|(2+x-y)/(y-x)|.

User Mesiah
by
7.8k points

No related questions found