162k views
5 votes
(b) dy/dx = (x - y+ 1)^2

User AnthonyW
by
8.4k points

1 Answer

5 votes

Substitute
v(x)=x-y(x)+1, so that


(\mathrm dv)/(\mathrm dx)=1-(\mathrm dy)/(\mathrm dx)

Then the resulting ODE in
v(x) is separable, with


1-(\mathrm dv)/(\mathrm dx)=v^2\implies(\mathrm dv)/(1-v^2)=\mathrm dx

On the left, we can split into partial fractions:


\frac12\left(\frac1{1-v}+\frac1{1+v}\right)\mathrm dv=\mathrm dx

Integrating both sides gives


\frac+\ln2=x+C


\frac12\ln|1-v^2|=x+C


1-v^2=e^(2x+C)


v=\pm\sqrt{1-Ce^(2x)}

Now solve for
y(x):


x-y+1=\pm\sqrt{1-Ce^(2x)}


\boxed{y=x+1\pm\sqrt{1-Ce^(2x)}}

User Belky
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories