Answer:
The maximum volume of the open box is 24.26 cm³
Explanation:
The volume of the box is given as
, where
and
.
Expand the function to obtain:
![g(x)=4x^3-28x^2+48x](https://img.qammunity.org/2020/formulas/mathematics/college/9lj0hnbw8o6h8iuqeiajrl4x3nq8vkk6xz.png)
Differentiate wrt x to obtain:
![g'(x)=12x^2-56x+48](https://img.qammunity.org/2020/formulas/mathematics/college/3i2usk6b2y2ky7wiksvi0s7lepauszipcz.png)
To find the point where the maximum value occurs, we solve
![g'(x)=0](https://img.qammunity.org/2020/formulas/mathematics/college/vpzo3oqpvghpenzg7yx1ka9aaevy4yyxo9.png)
![\implies 12x^2-56x+48=0](https://img.qammunity.org/2020/formulas/mathematics/college/n1erkgmpdqk3h6q013zbmo2qmyf0kogic0.png)
![\implies x=1.13,x=3.54](https://img.qammunity.org/2020/formulas/mathematics/college/o9hi5ar5o2yg4o80bzf9is45u9ymmjevmi.png)
Discard x=3.54 because it is not within the given domain.
Apply the second derivative test to confirm the maximum critical point.
,
![g''(1.13)=24(1.13)-56=-28.88\:<\:0](https://img.qammunity.org/2020/formulas/mathematics/college/3h9k43wtxnfg1zfy74rkkyv7rgo62nzvnb.png)
This means the maximum volume occurs at
.
Substitute
into
to get the maximum volume.
![g(1.13)=1.13(6-2*1.13)(8-2*1.13)=24.26](https://img.qammunity.org/2020/formulas/mathematics/college/3c0r263stv3zxjjjtchdkhee94g9ueyixy.png)
The maximum volume of the open box is 24.26 cm³
See attachment for graph.