Answer:
The difference in the length of the two rods when compressed is
.
Step-by-step explanation:
Given that,
Length = 0.780 m
Diameter = 1.50 cm
Force = 4350 N
(a). For steel rod
We know ,
The young modulus for steel rod
![Y=2*10^(11)](https://img.qammunity.org/2020/formulas/physics/college/9ek2pgsd5tzgvm8cmcrcwhzme56qmrzbtr.png)
Using formula of young modulus
![e_(s)=(Fl)/(AY)](https://img.qammunity.org/2020/formulas/physics/college/dmtsbmewqp6l48lsyim8qec0boddia274t.png)
![e_(s)=(4350*0.780)/(3.14*(0.75*10^(-2))^2*2*10^(11))](https://img.qammunity.org/2020/formulas/physics/college/eibo2yyfl18gyhc0fq0j9l5y770qe041oc.png)
![e_(s)=9.6*10^(-5)\ m](https://img.qammunity.org/2020/formulas/physics/college/q93wp4slq637oi8bxoluva16lana65oguc.png)
(b). For copper rod
We know ,
The young modulus for steel rod
![Y=1.1*10^(11)](https://img.qammunity.org/2020/formulas/physics/college/4v58o4o4f8arojcso31gb0mfk0koch4fi0.png)
Using formula of young modulus
![e_(c)=(Fl)/(AY)](https://img.qammunity.org/2020/formulas/physics/college/ccm8rxoo12jjf7dfwewe8h5u9qiha76mj8.png)
![e_(c)=(4350*0.780)/(3.14*(0.75*10^(-2))^2*1.1*10^(11))](https://img.qammunity.org/2020/formulas/physics/college/eik5le9zauag7c12xg2lfhh1y1gnnpwj6n.png)
![e_(c)=1.5*10^(-4)\ m](https://img.qammunity.org/2020/formulas/physics/college/b25vstchdl8gpf27iqq98q02w78gl7d44s.png)
The difference in the length of the two rods when compressed is
![difference\ in\ length=e_(c)-e_(s)](https://img.qammunity.org/2020/formulas/physics/college/b02a3xcv0khp6eupewrqy17ho3u21dqbei.png)
![difference\ in\ length=1.5*10^(-4)-9.6*10^(-5)](https://img.qammunity.org/2020/formulas/physics/college/wtm36vsos3orx6z24efu4lkwv4exrfo8ua.png)
![difference\ in\ length =5.4*10^(-5)\ m](https://img.qammunity.org/2020/formulas/physics/college/4a1kv24rdzki6smr1tsu1iwf85lrooqake.png)
Hence, The difference in the length of the two rods when compressed is
.