200k views
2 votes
Completion time (from start to finish) of a building remodeling project is normally distributed with a mean of 200 work-days and a standard deviation of 10 work-days. To be 99% sure that we will not be late in completing the project, we should request a completion time of _______ work-days.

User Brina
by
8.2k points

2 Answers

1 vote
We should request a completion time of

223 work-days.
User Mark Ainsworth
by
7.7k points
3 votes

Answer:

233 days.

Explanation:

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean
\mu and standard deviation
\sigma, the zscore of a measure X is given by:


Z = (X - \mu)/(\sigma)

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

In this problem, we have that:


\mu = 200, \sigma = 10

To be 99% sure that we will not be late in completing the project, we should request a completion time of ...

This is the value of X when Z has a pvalue of 0.99. So X when Z = 2.325.


Z = (X - \mu)/(\sigma)


2.325 = (X - 200)/(10)


X - 200 = 10*2.325


X = 232.5

So the correct answer is 233 days.

User Kraysak
by
8.2k points

Related questions

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories