Answer:
The magnetic field strength of the proton is 0.026 Tesla.
Step-by-step explanation:
It is given that,
Speed of the proton,
![v=0.25* 10^7\ m/s](https://img.qammunity.org/2020/formulas/physics/college/c15w6440gnc0z3035x4244s5itenk3ymzf.png)
The radius of circular path, r = 0.975 m
It is moving perpendicular to a magnetic field such that the magnetic force is balancing the centripetal force.
![qvB\ sin90=(mv^2)/(r)](https://img.qammunity.org/2020/formulas/physics/college/xkpe2kqe3thbxnxaxn7wanw4z8khxgyura.png)
![B=(mv)/(qr)](https://img.qammunity.org/2020/formulas/physics/college/vzkn8818v9sh555qejcopnvtw7ykungwuw.png)
q = charge on proton
![B=(1.67* 10^(-27)\ kg* 0.25* 10^7\ m/s)/(1.6* 10^(-19)\ C* 0.975\ m)](https://img.qammunity.org/2020/formulas/physics/college/3y8twsorcg1hoxzozeomqd1ava82rffsmw.png)
B = 0.026 Tesla
So, the magnetic field strength of the proton is 0.026 Tesla.