394,137 views
38 votes
38 votes
What are the roots of the function f(x) = (log(3x ) − 2 log(3)) · (x 2 − 1) with x ∈ R?

User Smartcat
by
3.1k points

1 Answer

4 votes
4 votes


\huge\underline{\underline{\boxed{\mathbb {SOLUTION:}}}}

Given:


\sf{f(x) = ( log(3x) - 2log(3))( {x}^(2) - 1) }
\ \sf{x \in R}

Solve:


\longrightarrow \sf{f(x) = (log(3x) - 2log(3))( {x}^(2) - 1) = 0}


\small\longrightarrow \sf{ log(3x) - 2 log(3) = 0 \: \: or \: {x}^(2) - 1 = 0 }


\small\longrightarrow \sf{ log(3x) - 2 log(3) = 0}


\small\longrightarrow \sf{ log(3x) - 2 log(3) = 0}


\small\longrightarrow \sf{ log(3x) - log( {3}^(2) ) = 0}


\small\longrightarrow \sf{log_(10)( (3x)/(9) ) = 0}


\small\sf{ \Longrightarrow (3x)/(9) = {10}^(0) }


\small\longrightarrow \sf{ (x)/(3) = 1}


\small \sf{x= \underline{3}}

Next
\downarrow


\small\longrightarrow \sf{{x}^(2) - 1 = 0}


\small\longrightarrow \sf{ {x}^(2) = 1}


\small\longrightarrow \sf{x = \pm √(1) }


\small\sf{x= (\underline{1},-1)}


\small\longrightarrow \sf{ log(3x) = log(3( - 1)) \cancel{ \in}R}


\huge\underline{\underline{\boxed{\mathbb {ANSWER:}}}}


\small\bm{The \: \: roots \: \: of \: \: f(x) \: are \: 1 \: and \: 3.}

User Steve Weet
by
2.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.