Answer:
Option C and D
Explanation:
To find : After being rearranged and simplified, which of the following equations could be solved using the quadratic formula? Check all that apply.
Solution :
Quadratic equation is
with solution
![x=(-b\pm√(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ty88pbafyv5o23b2f4dpdb7fqtzb1mmwac.png)
A.
![5x+4=3x^4-2](https://img.qammunity.org/2020/formulas/mathematics/high-school/4ohvdg2sjltc0npz5ldhi2uihubanss232.png)
Simplifying the equation,
![3x^4-2-5x-4=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/b7cyl8k91p24s8gvxf6lgg1tprdik4mfrs.png)
![3x^4-5x-6=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/9xrsaquiew9kjtloj29hprm1agerefld5i.png)
It is not a quadratic equation.
B.
![-x^2+4x+7=-x^2-9](https://img.qammunity.org/2020/formulas/mathematics/high-school/2jaj62fz82cehy8u0l99s7yjqu51o0oypw.png)
Simplifying the equation,
![-x^2+4x+7+x^2+9=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/qv6rkr1ou5ksoke9rrfo6ca4llpmiolugx.png)
![4x+16=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/hhjf7j6rwg7y5d5m7633xcowfd49euqpb8.png)
It is not a quadratic equation.
C.
![9x + 3x^2 = 14 + x-1](https://img.qammunity.org/2020/formulas/mathematics/high-school/fpgnfjcztwpjo56i9jqdd4i7pbeyg80ao2.png)
Simplifying the equation,
![3x^2+9x-x-14+1=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/s4x3u8jd2qdcxye012oqjidrnn79a0zgbz.png)
![3x^2+8x-13=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/yc8o3jshrdiyrd07pr4i3jv1xjxygocdyq.png)
It is a quadratic equation where a=3, b=8 and c=-13.
![x=(-8\pm√(8^2-4(3)(-13)))/(2(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/8r1p0ux4d8tk6ooho9iqijco6jf2hfd1ok.png)
![x=(-8\pm√(220))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/raidlcfpbcmdtnscampdo8banhgard8ykv.png)
![x=(-8+√(220))/(6),(-8-√(220))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/96zs3pfoq7icuftla2qi0x7n94rbjji6ys.png)
![x=1.13,-3.80](https://img.qammunity.org/2020/formulas/mathematics/high-school/x24pl0u1649oa7snwucbdsxz4u8rh1rcxk.png)
D.
![2x^2+x^2+x=30](https://img.qammunity.org/2020/formulas/mathematics/high-school/singftar08t3iv5fblxty7jats7eihxry7.png)
Simplifying the equation,
![3x^2+x-30=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/n97hfn9q03crxbc9w0vvzcvj7isdhup146.png)
It is a quadratic equation where a=3, b=1 and c=-30.
![x=(-1\pm√(1^2-4(3)(-30)))/(2(3))](https://img.qammunity.org/2020/formulas/mathematics/high-school/21bfewb4z2gg5xn0e0d5uqvksls1pkqi7d.png)
![x=(-1\pm√(361))/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/m6w1kbstdpsmvpklq75tf1jdkb3qo6uj8a.png)
![x=(-1+19)/(6),(-1-19)/(6)](https://img.qammunity.org/2020/formulas/mathematics/high-school/x6dxsszsvjk1j47d41xend5nakcnlhyol8.png)
![x=3,-3.3](https://img.qammunity.org/2020/formulas/mathematics/high-school/wbr75ce830n3u24d7gitdufii66atjxt9z.png)
Therefore, option C and D are correct.