Answer: 0.1052
Explanation:
Given : Mean :
![\mu= 120](https://img.qammunity.org/2020/formulas/mathematics/college/vm3uyvgtcx0pszg7dgwipo1z98wyvyhwi1.png)
Standard deviation :
![\sigma= 5.6](https://img.qammunity.org/2020/formulas/mathematics/college/448z4htp0unuox93fe9bv4aiz7d5zphrd3.png)
We assume the variable is normally distributed.
The formula for z-score is given by :-
![z=(x-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/10fia1p0qwvlz4zhb867kzy3u7bscognwz.png)
For x=120.4
![z=(120.4-120)/(5.6)=0.0714285714286\approx0.07](https://img.qammunity.org/2020/formulas/mathematics/college/asodfasncs8lzeawrimyce6hpiv4erqml3.png)
For x=121.9
![z=(121.9-120)/(5.6)=0.339285714286\approx0.34](https://img.qammunity.org/2020/formulas/mathematics/college/rofcoejj9wppi1baq7xrwy1hu0urh2znxk.png)
The p-value =
![P(0.07<z<0.34)=P(0.34)-P(0.07)](https://img.qammunity.org/2020/formulas/mathematics/college/wl76sbg13a6u4w6tcy9pw7bzx12qjq2rvn.png)
![=0.6330717-0.5279031=0.1051686\approx0.1052](https://img.qammunity.org/2020/formulas/mathematics/college/j8uzqw7q9lifegtwv0b6esr3pwjpr775hs.png)
The probability that the individual's pressure will be between 120.4 and 121.9 mm Hg = 0.1052