191k views
0 votes
Solve the system of equation by guess sidle method

8x1 + x2 + x3 = 8

2x1 + 4x2 + x3 = 4

x1 + 3x2 + 5x3 = 5

User MojoTosh
by
4.9k points

1 Answer

2 votes

Answer: The solution is,


x_1\approx 0.876


x_2\approx 0.419


x_3\approx 0.574

Explanation:

Given equations are,


8x_1 + x_2 + x_3 = 8


2x_1 + 4x_2 + x_3 = 4


x_1 + 3x_2 + 5x_3 = 5,

From the above equations,


x_1=(1)/(8)(8-x_2-x_3)


x_2=(1)/(4)(4-2x_1-x_3)


x_3=(1)/(5)(5-x_1-3x_2)

First approximation,


x_1(1)=(1)/(8)(8-(0)-(0))=1


x_2(1)=(1)/(4)(4-2(1)-(0))=0.5


x_3(1)=(1)/(5)(5-1-3(0.5))=0.5

Second approximation,


x_1(2)=(1)/(8)(8-(0.5)-(0.5))=0.875


x_2(2)=(1)/(4)(4-2(0.875)-(0.5))=0.4375


x_3(2)=(1)/(5)((0.875)-3(0.4375))=0.5625

Third approximation,


x_1(3)=(1)/(8)(8-(0.4375)-(0.5625))=0.875


x_2(3)=(1)/(4)(4-2(0.875)-(0.5625))=0.421875


x_3(3)=(1)/(5)(5-(0.875)-3(0.421875))=0.571875

Fourth approximation,


x_1(4)=(1)/(8)(8-(0.421875)-(0.571875))=0.875781


x_2(4)=(1)/(4)(4-2(0.875781)-(0.571875))=0.419141


x_3(4)=(1)/(5)(5-(0.875781)-3(0.419141))=0.573359

Fifth approximation,


x_1(5)=(1)/(8)(8-(0.419141)-(0.573359))=0.875938


x_2(5)=(1)/(4)(4-2(0.875938)-(0.573359))=0.418691


x_3(5)=(1)/(5)(5-(0.875938)-3(0.418691))=0.573598

Hence, by the Gauss Seidel method the solution of the given system is,


x_1\approx 0.876


x_2\approx 0.419


x_3\approx 0.574

User Mwalsher
by
5.1k points