Answer:
20.0 unit ( approx )
Explanation:
Here,
ABC is a triangle in which,
m∠A=15°, a=9, and b=12,
By the law of sine,
![(sin A)/(a)=(sin B)/(b)=(sin C)/(c)----(1)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/cn5ot9pq8c1sbayzn4y2xyou84mziic947.png)
![(sin A)/(a)=(sin B)/(b)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ctx1zf5wdqu3yygwk295dhmk1476xeg2p1.png)
![\implies sin B=(b sin A)/(a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/khh98ibd4zzrnu5hzm88agmj1as2jowsmy.png)
By substituting the values,
![\implies sin B=(12* sin 15^(\circ))/(9)\approx 0.3451](https://img.qammunity.org/2020/formulas/mathematics/middle-school/4k3688w5hi9tc6tk17gznwdh3qpxbtxt9v.png)
![\implies B \approx 20.19^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/3ogdk2ush1q6e54k73ci4utinwy1hjhhgp.png)
Now, by the property of triangle,
m∠A + m∠B+ m∠C = 180°
⇒ m∠C = 180° - 15° - 20.19° = 144.81°,
By the equation (1),
![c=(b sin C)/(sin B)=(12* sin 144.81^(\circ))/(sin 20.19^(\circ))=20.0370532419\approx 20.0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/pszx9nw1bqei3e7j6bk4xya2gh7mzp2pq3.png)