Step-by-step explanation:
We need to find the speed of an electron that has fallen through a potential difference of 125 volts. It can be calculated using the De-broglie hypothesis as :
(a) V = 125 volts
![(1)/(2)mv^2=qV](https://img.qammunity.org/2020/formulas/physics/college/eb8st9gputyivj8svwmqicm1fp88k4njyu.png)
Where
v = speed of electron
V is potential difference
![v=\sqrt{(2qV)/(m)}](https://img.qammunity.org/2020/formulas/physics/college/fscfy7ruams0vwx5skh03bam4lfy9l3x59.png)
![v=\sqrt{(2* 1.6* 10^(-19)* 125\ V)/(9.1* 10^(-31))}](https://img.qammunity.org/2020/formulas/physics/college/hfa1dxz12hjwg7e9wltexktim31jjx0i15.png)
v = 6629935.44 m/s
![v=6.62* 10^6\ m/s](https://img.qammunity.org/2020/formulas/physics/college/x45q8n6akqxs55ifb46bsngg1z1fih7exn.png)
(b) V = 125 megavolts
![V=1.25* 10^8\ V](https://img.qammunity.org/2020/formulas/physics/college/si9hq684nw85mtie87opdj97x7cluwm4j0.png)
![v=\sqrt{(2qV)/(m)}](https://img.qammunity.org/2020/formulas/physics/college/fscfy7ruams0vwx5skh03bam4lfy9l3x59.png)
![v=\sqrt{(2* 1.6* 10^(-19)* 1.25* 10^8\ V)/(9.1* 10^(-31))}](https://img.qammunity.org/2020/formulas/physics/college/8w3y9r9jjp2j8ywhff118sqc4y3s6egurp.png)
![v=6.62* 10^9\ m/s](https://img.qammunity.org/2020/formulas/physics/college/lnszbbwnit7slos2b4lsncadx0xwy92ea0.png)
Hence, this is the required solution.