162,133 views
20 votes
20 votes
A) Rearrange the equation to solve for x= square root of 2x/a

A) Rearrange the equation to solve for x= square root of 2x/a-example-1
User Keeno
by
2.4k points

2 Answers

11 votes
11 votes


\\ \rm\dashrightarrow t=√(2x){a}


\\ \rm\dashrightarrow t^2=(2x)/(a)


\\ \rm\dashrightarrow 2x=at^2


\\ \rm\dashrightarrow x=(at^2)/(2)

#b

  • Put a=4
  • t=90


\\ \rm\dashrightarrow x=(4(90)^2)/(2)


\\ \rm\dashrightarrow x=2(8100)


\\ \rm\dashrightarrow x=16200

User Pawan Sen
by
3.1k points
17 votes
17 votes

Answer:


\textsf{A)} \quad x=(t^2a)/(2)


\textsf{B)} \quad x=16200

Step-by-step explanation:

Given formula:


t=\sqrt{(2x)/(a)}

Part A

To rearrange the equation to solve for x, square both sides:


\implies t^2=\left(\sqrt{(2x)/(a)}\right)^2


\implies t^2=(2x)/(a)}

Multiply both sides by a:


\implies t^2 \cdot a=(2x\cdot a)/(a)}


\implies t^2a=2x

Divide both sides by 2:


\implies (t^2a)/(2)=(2x)/(2)


\implies x=(t^2a)/(2)

Part B

Given:

  • a = 4
  • t = 90

Substitute the given values into the equation found in part A:


\begin{aligned}x & =(t^2a)/(2)\\\\\implies x & = (90^2 \cdot 4)/(2)\\\\& = (8100 \cdot 4)/(2)\\\\& = (32400)/(2)\\\\ \implies x & = 16200\end{aligned}

User Antonagestam
by
2.8k points