Answer:
B.
![(sin 35)/(9)=(sin 40 )/(b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zqqlnrvaszs0n5yl6csrne0yw8h4fpxuss.png)
Explanation:
We are given that in a triangle ABC.
![m\angle =35^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/z8bf80lhgglzdeblt20gqm77izqyot8mfb.png)
![m\angle B=40^(\circ)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mvty91pkoy41ibsok2702ec2zums8th2ne.png)
a=9
We have to find an equation which solve for b
We know that a sine law
![(a)/(sine A)=(b)/(sinB)=(c)/(sinC)](https://img.qammunity.org/2020/formulas/mathematics/high-school/ce5jtuda2pl9pdbukqhojr5wqouq66copw.png)
Using above formula of sine law
Substituting all given values in the above formula of sine law
Then we get
![(9)/(sin 35)=(b)/(sin 40)](https://img.qammunity.org/2020/formulas/mathematics/high-school/b01klbtmes1c829c64nrikt9ddvxkw36ik.png)
By cross multiply then we get
![sin 40* 9=sin35 * b](https://img.qammunity.org/2020/formulas/mathematics/high-school/n6k7un15piqbnnau7otbe37ho83ms64221.png)
![(sin 40 * 9)/(b)= sin 35](https://img.qammunity.org/2020/formulas/mathematics/high-school/z3cknza8epnktdr05jsmqg4hhym8zghow4.png)
Using division property of equality
![( sin 40)/(b)=(sin 35)/(9)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7zlztghrbbabyczj46pf6rbehyvtctpa6a.png)
Using division property of equality
Hence, option B is true option for solving b.
Answer:B.
![(sin 35)/(9)=(sin 40 )/(b)](https://img.qammunity.org/2020/formulas/mathematics/high-school/zqqlnrvaszs0n5yl6csrne0yw8h4fpxuss.png)