Answer:
Option A) 121.73
Explanation:
The given scenario can be represented by a Triangle ABC attached in the image below.
We have 3 sides of the triangle ABC, using the measure of these sides we can find the angle opposite to side c which will help us in finding the measure of bearing.
Law of cosine relates the 3 sides of the triangle and angle opposite to one side by following equation:

Using the values of a,b, and c we get:

Thus, the measure of angle C comes out to be 58.267 degrees. The angle with which the boat will have to turn will be:
180 - 58.267 = 121.733 degrees.
Therefore, option A is the correct answer