Answer:
B.
![f(x)=x^4-x^3+2x^2-4x-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vogpcxmj4pxclngj93fpm2pmqozr3qzvbj.png)
Explanation:
If
is a root of f(x), then the complex conjugate
is also a solution. If f(x) should have exactly 2 real roots, then by the Fundamental Theorem of Algebra, the minimum degree of f(x) is 4.
Hence the first and last options are eliminated.
By the Remainder Theorem,
.
Let us check for options B and C.
For option B.
![f(x)=x^4-x^3+2x^2-4x-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vogpcxmj4pxclngj93fpm2pmqozr3qzvbj.png)
![\implies f(2i)=(2i)^4-(2i)^3+2(2i)^2-4(2i)-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/kkj9dsfr9gfnz43ar222p7nxd4wjz1nbid.png)
![\implies f(2i)=16i^4-8i^3+8i^2-8i-8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/wu9wqcchzcweo1kfbxqxxbqiqdfsv2s8pb.png)
![\implies f(2i)=16+8i-8-8i-8=0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/fs5vr27pdhia4j8xhxvqwegafyqryekdo6.png)
For option C
![f(x)=x^4-x^3-6x^2+4x+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/o8lr5nr9pi80lx9473yl73qfsmpp6jep9n.png)
![\implies f(2i)=(2i)^4-(2i)^3-6(2i)^2+4(2i)+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/f7dbm4p3xqdl6k9nkudqbrsss0z4wf05jp.png)
![\implies f(2i)=16i^4-8i^3-24i^2+8i+8](https://img.qammunity.org/2020/formulas/mathematics/middle-school/w4y05g9jcc8l7ezr3lm9qh1lo4ddyznn0p.png)
![\implies f(2i)=-16+8i+24+8i+8\\e0](https://img.qammunity.org/2020/formulas/mathematics/middle-school/1js2ao0c8irn2vo8aorwconcqp9660a3ha.png)
Therefore the correct choice is B.