Answer:
![0.98* 10^(-7)m](https://img.qammunity.org/2020/formulas/chemistry/college/1a7twr4f6jz3qpyw15hpatsff1lz1ef6qy.png)
Explanation:
For calculating wavelength, when the electron will jump from n=4 to n= 1
Using Rydberg's Equation: for hydrogen atom
![(1)/(\lambda)=R_H\left((1)/(n_i^2)-(1)/(n_f^2) \right )* Z^2](https://img.qammunity.org/2020/formulas/chemistry/college/pixwym0f0wduu1lt5qaulkilqahchuxj6o.png)
Where,
= Wavelength of radiation = ?
= Rydberg's Constant =
![1.097* 1067m](https://img.qammunity.org/2020/formulas/chemistry/college/60kjmlhitnwvh5l967d8z4kacp5axq7mna.png)
= Higher energy level = 4
= Lower energy level = 1
Z= atomic number = 1 (for hydrogen)
Putting the values, in above equation, we get
![(1)/(\lambda)=1.097* 10^7\left((1)/(1^2)-(1)/(4^2) \right )* 1^2](https://img.qammunity.org/2020/formulas/chemistry/college/e0gbg6tdsoeusnmnaq57spj3b9vsegise7.png)
![\lambda=0.98* 10^(-7)m](https://img.qammunity.org/2020/formulas/chemistry/college/5t9mlqh2q36pz6kr43e9ril9wyszeal0aq.png)
Thus the wavelength of the photon emitted will be
![0.98* 10^(-7)m](https://img.qammunity.org/2020/formulas/chemistry/college/1a7twr4f6jz3qpyw15hpatsff1lz1ef6qy.png)