Answer: 0.0081
Explanation:
Let X be the number of rafts.
Given : The mean number of rafts floating :
rafts per day .
Then , for 7 days the number of rafts =
rafts per day .
The formula to calculate the Poisson distribution is given by :_
![P(X=x)=(e^(-\lambda_1)\lambda_1^x)/(x!)](https://img.qammunity.org/2020/formulas/mathematics/college/2x1c2hyk87390nlc0pod5fxtzrr567sk34.png)
Now, the probability that they will have to wait more than a week is given by :-
![P(X>7)=1-P(X\leq7)\\\\=1-(P(0)+P(1)+P(2)+P(3)+P(4)+P(5)+P(5)+P(6)+P(7))\\\\=1-((e^(-2.8)2.8^(0))/(0!)+(e^(-2.8)2.8^(1))/(1!)+(e^(-2.8)2.8^(2))/(2!)+(e^(-2.8)2.8^(3))/(3!)+(e^(-2.8)2.8^(4))/(4!)+(e^(-2.8)2.8^(5))/(5!)+(e^(-2.8)2.8^(6))/(6!)+(e^(-2.8)2.8^(7))/(7!))\\\\=1-0.991869258012=0.008130741988\approx0.0081](https://img.qammunity.org/2020/formulas/mathematics/college/w82api3t5z0uqn9m7mw4ivakvg1mn6gvl8.png)
Hence, the required probability : 0.0081