Answer:
Area of the rectangle is increasing with the rate of 84 cm/s.
Explanation:
Let l represents the length, w represents width, t represents time ( in seconds ) and A represents the area of the triangle,
Given,
![(dl)/(dt)=6\text{ cm per second}](https://img.qammunity.org/2020/formulas/mathematics/college/clg6qfw3grjvbia8q2wsgr7tn4ek9xnuzc.png)
![(dw)/(dt)=5\text{ cm per second}](https://img.qammunity.org/2020/formulas/mathematics/college/ic9p5gzr0kz6kcset02tjdjupfjwedx0h1.png)
Also, l = 12 cm and w = 4 cm,
We know that,
A = l × w,
Differentiating with respect to t,
![(dA)/(dt)=(d)/(dt)(l* w)](https://img.qammunity.org/2020/formulas/mathematics/college/e3kkij1222tzi3exp7oexd6h0nrhmhhsqn.png)
![=l* (dw)/(dt)+w* (dl)/(dt)](https://img.qammunity.org/2020/formulas/mathematics/college/f0qdjo580zmrrh31n8ka81yvj8ox7uk36q.png)
By substituting the values,
![(dA)/(dt)=12* 5+4* 6](https://img.qammunity.org/2020/formulas/mathematics/college/wqk38jt35zl6pxtdueeal8cfv4qy5dhh4a.png)
![=60+24](https://img.qammunity.org/2020/formulas/mathematics/college/srqx0rzu4p1ytusr7qh9kt1avhk5edsx3g.png)
![=84](https://img.qammunity.org/2020/formulas/mathematics/college/g73fg9ykckiv3l5tdjay7gscva6lap3yk3.png)
Hence, the area of the rectangle is increasing with the rate of 84 cm/s.