21.0k views
2 votes
The random variables X and Y have the joint PMF pX,Y(x,y)={c⋅(x+y)2,0,if x∈{1,2,4} and y∈{1,3},otherwise. All answers in this problem should be numerical. Find the value of the constant c .

1 Answer

5 votes

In order for
p_(X,Y)(x,y) to be a valid PMF, its integral over the distribution's support must be equal to 1.


p_(X,Y)(x,y)=\begin{cases}\frac{c(x+y)}2&\text{for }x\in\{1,2,4\}\text{ and }y\in\{1,3\}\\\\0&\text{otherwise}\end{cases}

There are 3*2 = 6 possible outcomes for this distribution, so that


\displaystyle\sum_(x,y)p_(X,Y)(x,y)=\sum_{x\in\{1,2,4\}}\sum_{y\in\{1,3\}}\frac{c(x+y)}2=1


1=\displaystyle\frac c2\sum_{x\in\{1,2,4\}}((x+1)+(x+3))=\frac c2\sum_{x\in\{1,2,4\}(2x+4)


1=\displaystyle\frac c2((2+4)+(4+4)+(8+4))


1=13c\implies\boxed{c=\frac1{13}}

User Kestrel
by
5.8k points