To approximate the volume with 8 boxes, we have to split up the interval of integration for each variable into 2 subintervals, [0, 1] and [1, 2]. Each box will have midpoint
that is one of all the possible 3-tuples with coordinates either 1/2 or 3/2. That is, we're sampling
at the 8 points,
(1/2, 1/2, 1/2)
(1/2, 1/2, 3/2)
(1/2, 3/2, 1/2)
(3/2, 1/2, 1/2)
(1/2, 3/2, 3/2)
(3/2, 1/2, 3/2)
(3/2, 3/2, 1/2)
(3/2, 3/2, 3/2)
which are captured by the sequence
![m_(i,j,k)=\left(\frac{2i-1}2,\frac{2j-1}2,\frac{2k-1}2\right)](https://img.qammunity.org/2020/formulas/mathematics/college/kkzprfyyk8tc9yokvmqyvt9f0qdozxpkm4.png)
with each of
being either 1 or 2.
Then the integral of
over
is approximated by the Riemann sum,
![\displaystyle\iiint_B\cos(xyz)\,\mathrm dV\approx\sum_(i=1)^2\sum_(j=1)^2\sum_(k=1)^2\cos m_(i,j,k)\left(\frac{2-0}2\right)^2](https://img.qammunity.org/2020/formulas/mathematics/college/fhwe2n4gbvx1thtr5r7fazla4pz9aud89f.png)
![=\displaystyle\sum_(i=1)^2\sum_(j=1)^2\sum_(k=1)^2\cos\frac{(2i-1)(2j-1)(2k-1)}8](https://img.qammunity.org/2020/formulas/mathematics/college/m34064turptepbkn10ssbvdv0w2fj0k5iu.png)
![=\cos\frac18+3\cos\frac38+3\cos\frac98+\cos\frac{27}8\approx\boxed{4.104}](https://img.qammunity.org/2020/formulas/mathematics/college/vr65mubmhl1ms7ojji5ospmrzdp4h2acxk.png)
(compare to the actual value of about 4.159)