Answer with explanation:
Given the function f from R to
![(0,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7qikb3s42gn7tzshntwyvkp56ielhdxe14.png)
f:
![R\rightarrow(0,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/gje2e2yxn55r7vlq8mtiwfmyb0msgk4or4.png)
![-f(x)=x^2](https://img.qammunity.org/2020/formulas/mathematics/college/op7rd44jyykoy971pyc3fu9pzql9s5vet5.png)
To prove that the function is objective from R to
![(0,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7qikb3s42gn7tzshntwyvkp56ielhdxe14.png)
Proof:
![f:(0,\infty )\rightarrow(0,\infty)](https://img.qammunity.org/2020/formulas/mathematics/college/jh15yc3ymck868roahp9ogvjrryn6bt5lx.png)
When we prove the function is bijective then we proves that function is one-one and onto.
First we prove that function is one-one
Let
![f(x_1)=f(x_2)](https://img.qammunity.org/2020/formulas/mathematics/college/6asopp7z13pw3xaxi86nt4i332drtx8zpc.png)
![(x_1)^2=(x_2)^2](https://img.qammunity.org/2020/formulas/mathematics/college/k5bzkxn0ap7pewav2myrka02dco0gs49zo.png)
Cancel power on both side then we get
![x_1=x_2](https://img.qammunity.org/2020/formulas/mathematics/high-school/2ahzpqiyycefwstomlij0glzv4f7ftk346.png)
Hence, the function is one-one on domain [tex[(0,\infty)[/tex].
Now , we prove that function is onto function.
Let - f(x)=y
Then we get
![y=x^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/119iel6l5tkcn7b4lhapzm9adpkt0zn3jo.png)
![x=\sqrt y](https://img.qammunity.org/2020/formulas/mathematics/college/b3t8on59z6jabi14irj82trawophgisu96.png)
The value of y is taken from
![(0,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7qikb3s42gn7tzshntwyvkp56ielhdxe14.png)
Therefore, we can find pre image for every value of y.
Hence, the function is onto function on domain
![(0,\infty)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7qikb3s42gn7tzshntwyvkp56ielhdxe14.png)
Therefore, the given
is bijective function on
not on whole domain R .
Hence, proved.