228k views
0 votes
choose the equation that represents a line that represents a line that passes through points -3, 2 and 2,1 A. 5x+y=-13 B. 5x-y=17 C. x-5y=13 D. x+5y=7​

User Llimllib
by
5.6k points

1 Answer

4 votes

bearing in mind that standard form for a linear equation means

• all coefficients must be integers, no fractions

• only the constant on the right-hand-side

• all variables on the left-hand-side, sorted

• "x" must not have a negative coefficient


\bf (\stackrel{x_1}{-3}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{1}) \\\\\\ slope = m\implies \cfrac{\stackrel{rise}{ y_2- y_1}}{\stackrel{run}{ x_2- x_1}}\implies \cfrac{1-2}{2-(-3)}\implies \cfrac{-1}{2+3}\implies -\cfrac{1}{5} \\\\\\ \begin{array}ll \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-2=-\cfrac{1}{5}[x-(-3)]\implies y-2=-\cfrac{1}{5}(x+3)


\bf y-2=-\cfrac{1}{5}x-\cfrac{3}{5}\implies \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{5}}{5\left(y-2 \right)=5\left( -\cfrac{1}{5}x-\cfrac{3}{5} \right)}\implies 5y-10=-x-3 \\\\\\ 5y=-x+7\implies x+5y=7

User Mox Shah
by
5.7k points