Answer:
No of real solutions =1
No of extraneous solution =2
Real solution: x =3
Explanation:
![(3)/(x)-(x)/(x+6)=(18)/(x^2+6x)](https://img.qammunity.org/2020/formulas/mathematics/high-school/rn9vml7c271f9lf1fhyvkvtwr7a00kfaxa.png)
solving:
Taking LCM of x, x+6 and x^2+6 we get x(x+6)
Multiply the equation with LCM
![(3)/(x)*x(x+6)-(x)/(x+6)*x(x+6)=(18)/(x^2+6x)*x(x+6)\\3(x+6)-x*x=(18)/(x(x+6))*x(x+6)\\3(x+6)-x*x=18\\3x+18-x^2=18\\-x^2+3x+18-18=0\\-x^2+3x=0\\x^2-3x=0\\x(x-3)=0\\x=0 \,\,and\,\, x =3\\](https://img.qammunity.org/2020/formulas/mathematics/high-school/fcojyleb5dwh3zb6e11ulxndhcy5czu88n.png)
Checking for extraneous solution
for extraneous solution we check the points where the solution is undefined
The solution will be undefined. if, x=0 or x=-6 so both are extraneous solutions
Putting x =3
![(3)/(3)-(3)/(3+6)=(18)/((3)^2+6(0))](https://img.qammunity.org/2020/formulas/mathematics/high-school/cv2lpykpv9nxn5xtvz1n4yzwc6v5hmox2a.png)
![(3)/(3)-(3)/(3+6)=(18)/((3)^2+6(3))\\1-(3)/(9)=(18)/(9+18)\\1-(1)/(3)=(18)/(27)\\(3-1)/(3)=(2)/(3)\\(2)/(3)=(2)/(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/w00zt456nmfun913xq9sz9luj2fqgkk7bg.png)
So, x=3 is real solution.
Now, Selecting answers from tables
No of real solutions =1
No of extraneous solution =2
Real solution: x =3