200k views
0 votes
If alpha and beta are the roots of a quadratic polynomial 3x^2-6x-1 find the values of (Alpha-beta)

1 Answer

3 votes

Answer:

Either
-4√(6) or
4√(6), depending on whether
\alpha is larger than
\beta.

Explanation:

The two roots (might necessarily be distinct or real) of the quadratic equation


ax^(2) + bx + c = 0, where
a,
b, and
c are constants and
a\\e 0 are


  • \displaystyle x_1 = \frac{-b+\sqrt{\text{b^(2) - 4ac}}}{2a}, and

  • \displaystyle x_2 = \frac{-b-\sqrt{\text{b^(2) - 4ac}}}{2a}.

The difference between the two will be either:


x_1 - x_2 = 2\sqrt{b^(2) - 4ac} or


x_2 - x_1 = -2\sqrt{b^(2) - 4ac}.

For this question,


  • a = 3,

  • b = -6, and

  • c = -1.


x_1 - x_2 = 2\sqrt{(-6)^(2) - 4* 3* (-1)} = 4√(6), or


x_1 - x_2 = -2\sqrt{(-6)^(2) - 4* 3* (-1)} = -4√(6).

User Marioaviles
by
5.8k points