Answer: The required solution set is
(x, y) = (3, 4), (-3, 4), (3, -4) and (-3, -4).
Step-by-step explanation: We are given to solve the following system :
![x^2+y^2=25~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\y^2-x^2=7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)](https://img.qammunity.org/2020/formulas/mathematics/college/14hqzsy72bybmz7um4yxphomigujod2c8x.png)
We will be using the method of Elimination to solve the problem.
Adding equations (i) and (ii), we have
![(x^2+y^2)+(y^2-x^2)=25+7\\\\\Rightarrow 2y^2=32\\\\\Rightarrow y^2=16\\\\\Rightarrow y=\pm√(16)~~~~~~~~~~~~~~~~~~~[\textup{taking square root on both sides}]\\\\\Rightarrow y=\pm4.](https://img.qammunity.org/2020/formulas/mathematics/college/96kyd4hrrhlmsc4dnbx78ywr8e3xhh2y3w.png)
From equation (ii), we get
![(\pm4)^2-x^2=7\\\\\Rightarrow 16-x^2=7\\\\\Rightarrow x^2=16-7\\\\\Rightarrow x^2=9\\\\\Rightarrow x=\pm\sqrt9~~~~~~~~~~~~~~~~~~[\textup{taking square root on both sides}]\\\\\Rightarrow x=\pm3.](https://img.qammunity.org/2020/formulas/mathematics/college/55q8ro4ew4zo9vihqteu3ebu7bfmmu12m8.png)
Thus, the required solution set is
(x, y) = (3, 4), (-3, 4), (3, -4) and (-3, -4).