Hello!
The answer is:
The correct option is:
A.
![√(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3jkdozb6pk3x1px4ym8d058os0wzvynm5a.png)
Why?
Since we already know the hypothenuse and the opposite side of the triangle (y), we can calculate the value of "x" using the Pythagorean Theorem.
We have that:
![Hypothenuse^(2)=Adjacent^(2)+Opposite^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/4yqfwcp0oke4ifojyh83h7qjuaggpeivio.png)
We know that:
![Hypothenuse=z=2\\Adjacent=x=1](https://img.qammunity.org/2020/formulas/mathematics/high-school/2jaanjvagfwjpoedo4rwqcn3do3w0rcrwz.png)
So, substituting and calculating we have:
![2^(2)=1^(2)+Opposite^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/674tuzjm5kcxjet31dg8bfm0iu0u5mtif5.png)
![4-1=Opposite^(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7xk4hogfgllhiknjba827ujoei07n5ji9x.png)
![Opposite^(2)=3\\Opposite=√(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/c3uc6qioo12jsptv4mqwun5r2ri7nxdvva.png)
Then,using the following trigonometric relation:
![Tan(\alpha)=(Opposite)/(Adjacent)\\\\Tan(60\°)=Tan((Opposite)/(Adjacent))=Tan((√(3) )/(1))^=\sqrt{3](https://img.qammunity.org/2020/formulas/mathematics/high-school/z0srenrrv059hb3rsp9ob6o7rdj5xv063w.png)
We have that the correct option is:
A.
![√(3)](https://img.qammunity.org/2020/formulas/mathematics/high-school/3jkdozb6pk3x1px4ym8d058os0wzvynm5a.png)
Have a nice day!